On Snarks that are far from being 3-Edge Colorable

نویسنده

  • Jonas Hägglund
چکیده

In this note we construct two infinite snark families which have high oddness and low circumference compared to the number of vertices. Using this construction, we also give a counterexample to a suggested strengthening of Fulkerson’s conjecture by showing that the Petersen graph is not the only cyclically 4-edge connected cubic graph which require at least five perfect matchings to cover its edges. Furthermore the counterexample presented has the interesting property that no 2-factor can be part of a cycle double cover.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On measures of edge-uncolorability of cubic graphs: A brief survey and some new results

There are many hard conjectures in graph theory, like Tutte’s 5-flow conjecture, and the 5-cycle double cover conjecture, which would be true in general if they would be true for cubic graphs. Since most of them are trivially true for 3-edge-colorable cubic graphs, cubic graphs which are not 3-edge-colorable, often called snarks, play a key role in this context. Here, we survey parameters measu...

متن کامل

On Polyhedral Embeddings of Cubic Graphs

Polyhedral embeddings of cubic graphs by means of certain operations are studied. It is proved that some known families of snarks have no (orientable) polyhedral embeddings. This result supports a conjecture of Grünbaum that no snark admits an orientable polyhedral embedding. This conjecture is verified for all snarks having up to 30 vertices using computer. On the other hand, for every nonorie...

متن کامل

Uniquely Edge-3-Colorable Graphs and Snarks

A cubic graph G is uniquely edge-3-colorable if G has precisely one 1-factorization. It is proved in this paper, if a uniquely edge-3-colorable, cubic graph G is cyclically 4-edgeconnected, but not cyclically 5-edge-connected, then G must contain a snark as a minor. This is an approach to a conjecture that every triangle free uniquely edge-3-colorable cubic graph must have the Petersen graph as...

متن کامل

A note on Berge-Fulkerson coloring

The Berge–Fulkerson Conjecture states that every cubic bridgeless graph has six perfect matchings such that every edge of the graph is contained in exactly two of these perfect matchings. In this paper, a useful technical lemma is proved that a cubic graph G admits a Berge–Fulkerson coloring if and only if the graph G contains a pair of edge-disjoint matchings M1 and M2 such that (i) M1 ∪ M2 in...

متن کامل

Polyhedral Embeddings of Snarks in Orientable Surfaces

An embedding of a 3-regular graph in a surface is called polyhedral if its dual is a simple graph. An old graph-coloring conjecture is that every 3-regular graph with a polyhedral embedding in an orientable surface has a 3-edge-coloring. An affirmative solution of this problem would generalize the dual form of the Four Color Theorem to every orientable surface. In this paper we present a negati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016